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SUMMARY 

In many areas of computational fluid dynamics, especially numerical convective heat and mass transfer, the 
‘Hybrid’ and ‘Power-Law’ schemes have been widely used for many years. The popularity of these methods 
for steady-state computations is based on a combination of algorithmic simplicity, fast convesgence, and 
plausible looking results. By contrast, classical (second-order central) methods often involve convergence 
problems and may lead to obviously unphysical solutions exhibiting spurious numerical oscillations. 
Hybrid, Power-Law, and the exponential-difference scheme on which they are based give reasonably 
accurate solutions for steady, quasi-one-dimensional flow (when the grid is aligned with the main flow 
direction). However, they are often also used, out of context, for flows oblique or skew to the grid, in which 
case, inherent artificial viscosity (or diffusivity) seriously degrades the solution. This is particularly trouble- 
some in the case of recirculating flows, sometimes leading to qualitatively incorrect results-since the 
effective artificial numerical Reynolds (or Peclet) number may then be orders of magnitude less than the 
correct physical value. This is demonstrated in the case of thermally driven flow in tall cavities, where 
experimentally observed recirculation cells are not predicted by the exponential-based schemes. Higher- 
order methods correctly predict the onset of recirculation cells. In the past, higher-order methods have not 
been popular because of convergence difficulties and a tendency to generate unphysical overshoots near 
(what should be) sharp, monotonic transitions. However, recent developments using robust deferred- 
correction solution methods and simple flux-limiter techniques have eliminated all of these difficulties. 
Highly accurate, physically correct solutions can now be obtained at optimum computational efficiency. 
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1. EXPONENTIAL-BASED SCHEMES 

Exactly 40 years ago, Allen and Southwell’ developed what is now called exponential differenc- 
ing* for convection-diffusion operators. In the intervening period, several researchers have 
independently ‘rediscovered’ and/or approximated the basic elements of the Allen-Southwell 
scheme. The most notable of these convection-diffusion methods are the ‘Hybrid’ difference 
scheme of Spalding3 and the ‘Power-Law’ difference scheme of Patankar.4 These were combined 
with the SIMPLE pressure-solver4 in the so-called TEACH code5 developed at Imperial College, 
giving a robust, general-purpose elliptic-equation solver suitable for solving steady-state 
Navier-Stokes equations and associated heat and mass transfer problems. Over the past decade 
or more, the Hybrid and Power-Law methods have been used widely. Their popularity seems to 
have been increasing in recent years: at the most recent Thermal Problems conference6 in 
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Swansea, fully half of the convection papers used the Power-Law scheme and an additional 
quarter used Hybrid. 

In order to understand the basic properties of exponential-based schemes, consider the 
following idealized steady, one-dimensional, constant-coeficient, source-free, convection-diffusion 
problem for a scalar (such as temperature, for example) 

d T  d 2 T  
dx dx2 

u- = D- 

where u is the convecting velocity and D is the diffusivity, with a downstream boundary condition 

T(L) = 1 (2) 

and with 

T( -  0 0 )  = 0 

far upstream. The exact solution is 

T(x) = exp[ -PC(l - x/L)] 

where PC is the macroscopic Peclet number 

UL pi = - 
D 

(3) 

(4) 

or Reynolds number in the case of momentum or vorticity transport (replace D by the kinematic 
viscosity, v). 

Now consider a second-order central-difference approximation of equation (1) 

using a uniform grid of mesh-width h. This can be rewritten as 

( 2 - P ~ ) T i + i  - 4 T i + ( 2 + P ~ ) T ; - l  = o  (7) 
introducing the grid Peclet number (or, equivalently, the cell Reynolds number) 

uh 
P A  = 

Let k be an integer, defined for discrete values of x by 

Then, for boundary conditions given by equations (2) and (3), the diflerence equation, (7), has an 
exact solution 

T,(central) = ~ (:+;:)* 
Note that this is oscillatory if PA > 2. 

node values, as 
Using equation (9), the exact solution of the diferential equation can be written, for discrete 

T,(exact) = (e-'~), (1 1) 
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For PA < 2, the argument in equation (10) is positive but less than the exponential argument of 
equation (1 1). The central-difference solution is similar in form to that of the exact continuous 
solution, but appears to be somewhat less diffusive. The basic idea behind the Allen-Southwell 
scheme is to artijicially decrease the PA in equation (10) so as to match the exact solution of the 
differential equation, (11). In other words, replace PA in equation (10) by P z  (to be found) so that 

giving an explicit formula for the artificial ‘effective’ grid Peclet number 

= 2 tanh(PA/2) = F ( P A )  

Note that for small PA, 

P i  % PA, PA small (14) 

PX + 2, PA large (15) 

and for large PA, 

In fact, PX % 2 for PA above about 6. This is seen in Figure 1. 

wise-linear approximation is equivalent to the Hybrid scheme 
Figure 1 also shows three approximations to the hyperbolic tangent function. The piece- 

P z  (Hybrid) = P A  

P z  (Hybrid) = 2 

for 0 < P A  < 2 

for PA < 2 

The triangles show the Power-Law approximation 

PX (Power-Law) = 

P;(Power-Law) 3 2 for P 2 10 

for 0 < P < 10 
P A  + 2(1 - 0 1  PA)’  

- Hybrid 
A PLDS 
o Raithby & Schneider 

I EDS - 

PA 0 
0 

0 I I I I I , L  
I .oo 2.00 3.00 4.00  5.00 6.00 0 . 0 0  

(17) 

Figure 1. Effective grid Peclet number for EDS and various approximations 
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and the circles show the algebraic approximation of Raithby and Schneider2 

(1 + 0.005 P i )  I-’ 
Px(R&S) = [2(5 ‘+“Pi) + PA(1 + 0.05 Pi) 

The exponential scheme, equation (13),  and the above approximations are based on using 
second-order central differencing for both convection and diffusion, but with an artiJicially 
enhanced diffusion coefficient 

The additional artificial diffusivity is thus given by 

Dart - coth(?) - 1 
D 2  

Note, from equation (19), that when Px = 2, the total effective diffusivity is 

uh 
D*(PZ = 2 )  = - 

2 

This is the effective artificial numerical diffusivity inherent in first-order upwinding for convec- 
t i ~ n . ~  In other words, for the exponential convection-diffusion scheme (and the various approxi- 
mations thereof), when P x  -+ 2, the scheme is equivalent to using 

first-order upwinding for convection 
with physical diffusion terms ignored. 

Note that for the Hybrid approximation, this occurs when the physical grid PCclet number, PA, is 
above 2.  For the exponential scheme itself (and the Power-Law and algebraic approximations) 
this occurs for PA values above about 6. For the one-dimensional model problem on which 
exponential-difference schemes are based, this is an appropriate approximation: using first-order 
convection and neglecting (streamwise) diffusion gives the result that the scalar is swept down- 
stream unchanged. First-order upwinding does not ‘recognise’ the downstream boundary condi- 
tion-which therefore has no effect on the solution. 

In two-dimensional flows, exponential-differencing (or one of its approximations) is used 
componentwise; i.e. the convection-diffusion flux in each component direction is based on an 
effective local component grid Ptclet number; for example 

and 

In two dimensions, the schemes work best when one of the physical component grid Peclet 
numbers is very small. For example, PAY might be small because of small u values (the main flow 
direction is approximately aligned with the x axis), or Ay is small (fine mesh in the transverse 
direction), or D ,  is large (large physical transverse diffusivity). In three dimensions, two of the 
physical component grid Peclet numbers need to be small. These are quasi-one-dimensional 
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flows, with the main flow direction aligned with a grid co-ordinate. However, in many flows of 
practical interest, the flow direction may be oblique or skew to the grid. In such cases, component 
grid Ptclet numbers may be large in more than one direction. This introduces large amounts of 
‘cross-wind’ artificial diffusion, as discussed in Section 2. 

2. ARTIFICIAL NUMERICAL DIFFUSION 

Problems arise when the very strict conditions on which the exponential difference schemes (EDS) 
are based are relaxed. The EDS-based schemes work well for steady, quasi-one-dimensional flow 
(e.g. axial convection with transverse diffusion, such as occurs in boundary-layer and pipe 
flowEprovided the convecting velocity is (very nearly) aligned with one of the grid co-ordinates. 
To be more precise, the EDS model-problem conditions are listed here again: 

(i) steady-state conditions, 
(ii) one-dimensionality, 

(iii) constant coefficients, 
(iv) source free. 

To the extent that the flow conditions closely approximate these requirements, EDS-based 
schemes give tolerable results. Conversely, if any of these conditions is seriously violated, one 
should expect corresponding degradation of the solution. 

2.1. Unsteady JEow 

Under most conditions of practical interest, the component grid Peclet number in the main 
flow direction is likely to be much larger than 1. This means that EDS-based schemes are 
operating as first-order upwinding for convection with physical diffusion neglected. As is well 
known,’ first-order upwinding is extremely artificially diffusive for transient problems. This is 
seen in Figure 2, where distinct initial profiles under (what should be) purely convective 
conditions are soon erroneously converted into spreading Gaussian-like blobs. For this reason, 
EDS-based schemes are not usually used for unsteady flow calculations. 

Figure 2. Artificial diffusion of first-order upwinding in transient problems. Purely convective flow from left to right 
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2.2. Multidimensions 

By far the most serious misapplication of EDS-based schemes, such as Hybrid and Power-Law, 
is to multidimensional problems involving high-speed flow oblique or skew to the grid mesh. In 
this case, more than one component grid Peclet number is large at any given control volume cell. 
This means that the scheme is equivalent to first-order upwinding for convection with physical 
diffusion neglected. This gives rise to serious cross-wind artificial diffusion, as sketched in 
Figure 3. Part (a) of the figure shows the true physical situation: large component velocities 
together with small component diffusive fluxes, giving rise to a large oblique convecting velocity 
and small transverse (cross-wind) as well as small streamwise diffusion. Part (b) of the figure 
suggests enhanced componentwise artificial diffusion (of magnitude u Ax/2 in the x-direction and 
u Ay/2 in the y-direction). This means that the effective diffusive flux is artificially higher in all 
directions. The larger streamwise component diffusion is not so much of a problem, since the 
convection term is still dominant (after all, this is what happens in quasi-one-dimensional flows). 
However, the artificially enhanced cross-wind diffusive flux can have devastating effects--e.g. 
a sharp jump in value across the transverse direction (a shear layer or a discontinuity in 
temperature or species concentration) will be artificially smeared far beyond what should occur 
physically. 

There is another subtlety that should be stressed. Most flows of practical interest are turbulent, 
and the flow solver typically couples continuity, scalar transport, and momentum equations (plus 
pressure-solver) with sophisticated (and expensive!) multi-equation turbulence models. The turbu- 
lence equations predict the physical turbulent diffusivity (viscosity) on which the component 
grid Peclet (Reynolds) numbers are based. If these exceed 2 in the case of Hybrid or about 
6 for Power-Law (or EDS itself), the expensively calculated physical diffusivity (viscosity) is 

Dart 

Figure 3. Schematic of cross-wind artificial diffusion. (a) Physical situation. (b) Using EDS-based method 
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ignored-and replaced by u Ax12 and u Ay/2, componentwise. This means that the resulting 
predicted flow is largely insensitive to the turbulence model used (except where the stream direction 
happens to coincide with a grid direction). 

2.3. Smith-Hutton test problem 

The artificial diffusion of EDS-based schemes used for multidimensional transport is easily 
demonstrated by using a scalar test problem such as that devised by Smith and Hutton.8 Figure 4 
shows the prescribed velocity profile given by 

u = 2y(l - x’) 

v = - 241  -y’) 

(24) 

(25) 
and an inlet temperature profile 

Tin(x) = 1 + tanh[a(l + 2x)] 

where c1 is a steepness parameter, taken, in this case, to be 100. The steady transport equation to 
be solved is 

1 
P6 

V . V T = - V ~ T  

for the case of a constant Peclet number, P t  = 500. 
Figure 5 shows results, in terms of the predicted outlet profile, using the Power-Law scheme on 

three different grid meshes, 20 x 10, 40 x 20, and 80 x 40. The reference solution is obtained by 
using a very high-order method on a very fine (160 x 80) grid.’ The artificially diffusive nature of 
the EDS-based scheme is clearly evident. Also note the very slow convergence as the mesh is 

U 
-1 0 

X-- 
1 

Figure 4. Velocity field and inlet profile for the Smith-Hutton problem 



6-a 40 by  20 
..-.-* 20 b y  10 

Figure 5. Outlet profile for the Power-Law solution of the Smith-Hutton problem 

- REFERENCE 

A--B 40 by 20 
0-* 20 by  10 

Q-Q 80 by  40 

I 

Figure 6. Outlet profiles using the QUICK-2D scheme 
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refined. By contrast, Figure 6 shows results of the same test problem using the two-dimensional 
QUICK scheme" (third-order upwind-weighted convection, second-order diffusion). Although 
the coarse-mesh solution shows a little numerical smearing and a small overshoot, the solution is 
essentially converged at the 40 x 20 refinement. Accurate and efficient solutions of this kind are 
easy to ~ b t a i n ; ~  a simple flux-limiter technique for eliminating potential overshoots near rapid 
transition regions is outlined below, and has been discussed in detail elsewhere. 

4 @  I 

1 1  1 1  I 1  1 I 1  1 I I' 
X (d) X 

b 

Figure 7. Source-term test problem using Hybrid (left) and Power-Law (right). (a), (e): PA = 1; (b), (0: PA = 2; (c), (g): 
PA = 6; (d), (h): PA = 10 
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2.4 Variable coeficients 

Provided the flow is steady, essentially quasi-one-dimensional (with the main flow aligned with 
a grid coordinate), and relatively source-free, EDS-based schemes seem to be insensitive to 
relaxing the constant-coefficient condition. This is easy to understand because the problem can be 
broken up into a series of little one-dimensional convection4iffusion problems across control 
volumes, each one amounting to a two-point boundary-value problem using the local values of 
u and D. In each case, an exponential solution is appropriate, although the length-constant 
changes from point to point along the mesh. This is the most useful setting for EDS-based 
schemes. It should be noted, however, that higher-order, flux-limited methods generally give even 
more accurate solutions under these conditions. 

2.5. Source terms 

Even when the flow is steady and one-dimensional, source terms, such as pressure-gradients or 
mass or energy sources (or sinks), can cause serious problems for EDS-based schemes. This has 
been discussed elsewhere.’’ using a simple test problem with a known exact solution. Figure 7, 
taken from Reference 11, shows results for Hybrid calculations (on the left) and Power-Law 
results (on the right) for grid Peclet numbers of 1, 2, 6, and 10. For PA = 1 and 2, Hybrid is 
operating as second-order central for both convection and diffusion, and gives reasonable results. 
Above PA = 2, the numerical solution saturates (physical diffusion is omitted and replaced by 
artificial numerical diffusion, u 6 4 2 ) ;  artificial diffusion in the presence of source terms is seen to 
produce significant error.” In the case of the Power-Law scheme, errors are noticeable even at 
the lower PA values. Note that saturation occurs, in this case, at around PA - 6, in conformance 
with Figure 1. 

3. NATURAL CONVECTION IN TALL CAVITIES 

Two-dimensional, buoyancy-driven flow in a tall, rectangular cavity shows one of the possible 
effects of using the diffusive EDS-based schemes. Figure 8 shows the geometry of such an 

Figure 8. Geometry of the tall cavity 



CONVECTIVE MODELLING 43 1 

enclosure which is bounded by two vertical, isothermal walls of differing temperature and two 
horizontal walls that are insulated. The flow is driven as the fluid is heated at the hot wall. It then 
rises and turns at the top of the cavity and falls along the cold wall as it gives up heat. The basic 
unicellular flow can give way to multicellular flow for certain flow parameters, as reported by 
Vest and Arpaci.' 

The governing equations may be cast in vorticity-stream-function variables and non-dimen- 
sionalized by scaling the velocities by U = y g Lz AT/v, where y is the coefficient of volumetric 
expansion, g the gravitational field, v the kinematic viscosity, and AT the temperature difference 
between the two vertical walls. The cavity dimensions are scaled by L, the time by Lz/v, and the 
temperatures are calculated with respect to the cold wall and scaled with AT. The vorticity, o, and 
stream-function, $, are scaled with U / L  and U L ,  respectively. This non-dimensionalization was 
previously used by Drummond and K0rpe1a.I~ Applying the standard Boussinesq approxima- 
tion7 gives the following forms of the vorticity transport, energy and Poisson equations: 

The vorticity and stream-function are defined by 

av au 
a x  a y  m = - - -  

The Grashof number is defined as Gr = UL/v,  while the Prandtl number is Pr = v/a,  where a is 
the thermal diffusivity. The velocity components u and v correspond to the co-ordinates x and y, 
respectively, and T is the dimensionless temperature. The enclosure can be scaled to a dimension- 
less height of A = HIL, where A is the aspect ratio, and a width of 1.0. The boundary conditions 
are as follows: 

* = o  @ y = O , A ;  x=O,l  

Tl = 1 (left wall), 

aT 
aY 

To = 0 (right wall) 

- 0 @ y = 0, A (bottom, top walls) _ -  

(33) 

As described in detail in the work of Drummond et a1.,15 the numerical solution of the 
equations is obtained using schemes based on QUICK, Hybrid differencing, Power-Law differ- 
encing, first-order upwinding and the artificial-diffusion-free method of Arakawa.16 Solutions are 
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achieved by explicit time-marching to the steady-state solution. For the problem with A = 33.0, 
Gr = 9500 and Pr  = 0.71, the resulting flow patterns are shown in Figure 9. A 31 x 129 grid 
having uniform spacing in the x- and y-directions was used. Note that secondary circulations are 
present with the QUICK and Arakawa calculations, but suppressed by the other schemes. This 
result is not unexpected since values of PA are greater than 10 over much of the flow field. It is of 
interest that the cells shown in the figure were observed experimentally by Vest and ArpaciI3 and 
that the cell spacings predicted using the QUICK and Arakawa schemes were within 3 per cent of 
that found in the experimental study. 

The damping of the secondary flows is also evident when looking at  the maximum vorticity in 
the core of the cavity, a reasonable indicator of the onset of cell formation. For a cavity with 
A = 10.0 and a highly conductive fluid with Pr close to zero, Figure 10 shows the variation of the 
maximum core vorticity versus Grashof number. A sharp increase in vorticity is displayed by the 
QUICK and Arakawa calculations as cells start to form near Gr = 8000, a value very close to the 
critical Grashof number typical of low-Pr flows. On the other hand, the Hybrid and Power-Law 
calculations show a much more gradual rise that indicates a damping of the onset of secondary 
cells. Interestingly, the purportedly more accurate Power-Law scheme shows virtually the same 
results as Hybrid. First-order upwinding is obviously the most diffusive. 

(a) (b) tC) (dl (el 

Figure 9. Streamline patterns: (a) First-order upwind; (b) Hybrid; (c) Power-Law; (d) Arakawa; (e) QUICK 
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Figure 10. Maximum magnitude of vorticity in the core of the cavity 

4. HIGHER-ORDER CONVECTION 

The main motivating factor behind the development and subsequent popularity of EDS-based 
schemes seems to be the fact that they havefust convergence properties (when used in iterative 
solution procedures) and that they generate non-oscillatory results. Both of these features are 
related to the feedback stability properties of the convection-diffusion operator. In the case of 
central-differencing methods (of any order), there is no convective feedback sensitivity," so that 
under high-convection conditions (large Pi) ,  stability problems and numerical oscillations are 
likely to occur. To see this, consider the unsteady convection-diffusion equation for a node value 

where the time-derivative can also represent an iterative term in a steady-state calculation, and 
the non-dimensionalization is based on the mesh size (i.e. h = 1). The evolution of a perturbation 
in Ti can be studied by writing 

which has a formal solution 

6Ti = exp(Ct) (36) 

where C is the feedback sensitivity 
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For numerical perturbations to die out rapidly, C needs to be negative and of substantial 
magnitude. Also, in an iterative matrix solution of the steady-state equation, 

CRHS1 model = (38) 

desirable diagonal dominance conditions correspond to large absolute values of ‘c. 
Now consider the second-order central-difference model of equation (34) 

In this case, 

Czc= -- 
P A  

Note that there is no contributionfrom the Convection term. Under the high grid PCclet (Reynolds) 
numbers of practical calculations, second-order-central feedback sensitivity is extremely weak. 
For the same reason, the matrix structure is diagonally submissive, and iterative solutions are not 
straightforward. 

By contrast, the feedback sensitivity of the exponential-difference scheme is 

Under high-convection conditions, this approaches - 1, representing the strong negative feed- 
back sensitivity of first-order upwinding for convection. The matrix structure is diagonally 
dominant, for the same reason. Any numerical perturbations are quickly damped out; whereas, in 
the central-difference case, parasitic oscillations may occur, and the algorithm has no way of 
sensing or responding to their growth. 

Higher-order upwind-weighted convection methods have good feedback stability properties. 
For example, in one dimension, a family of control-volume methods can be constructed by 
writing the convection term as the difference of face values across a cell 

- (Tr - TJ (42) 

(43) 

(44) 

C F = f  (45) 

where (for positive convecting velocities) 

Tr(i) =f(Ti+1 + Ti) - CF*(Ti+l - 2Ti + Ti-1) 

T,(i) = Tr(i - 1) 

and 

and CF is a ‘curvature factor’. For example for second-order upwinding7 

For (the steady-state form of) Fromm’s method,17 

C F = $  

and for QUICK18 
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The overall (convective-plus-diffusive) feedback sensitivity is then 

2 
C O =  - 3 C F - -  

P A  
which is quite strongly negative, even under highly convective conditions. 

435 

(48) 

4.1. Deferred correction 

Higher-order upwind-weighted methods are potentially quite stable. But because of the wider 
stencil involved, one needs to be very careful when applying traditional tridiagonal matrix-solver 
techniques; simply casting outlying values into the source term can evidently lead to convergence 
problems. A much more stable iterative technique is based on the deferred-correction method. 
This has recently been put on a very firm basis for a consistent iterative formulation using 
QUICK.” In an iterative calculation, one simply writes the ‘new’ face value in terms of the 
first-order-upwind face value plus a correction term. The first-order face value involves one or the 
other of the adjacent node values (depending on the local convecting velocity direction); the 
correction term is deferred (or lagged) from the previous ‘old’ values and lumped into the source 
term. More specifically, the face value is written 

(49) 

(50) 

T f -  - Ti1“) (TBC) + ATf (OLD) 

ATf(0LD) = Tr.O.(OLD) - T:’“”(OLD) 

where TBC stands for to-be-computed, and 

Clearly, as the steady-state solution is reached, the first-order contributions cancel, and the 
solution is consistent with using the higher-order face values everywhere. Iterative convergence is 
very fast.” Since a tridiagonal matrix structure is maintained, well-known codes (such as 
TEACH, for example) can easily be modified, simply by adding appropriate A Tf (OLD) terms to 
the source term at each grid point.” 

4.2. Flux limiters 

As is by now well known, higher-order upwind methods (in their basic form) suffer from 
‘overshoot’ problems. Typically, a step-like profile which should be sharp and monotonic will be 
computed with an overshoot on one side or the other, or both. This was seen in Figure 6, for 
example. In many cases, the effect is small and can be ignored. However, there are situations in 
which the phenomenon can lead to non-linear instability. This might happen, for example, when 
a computed turbulence quantity overshoots a transition to small values and becomes (unphysi- 
cally) negative (sometimes called an undershoot). If this were to result in a negative turbulent 
viscosity (or diffusivity), computational divergence would follow quickly. This has led some 
researchers to a strategy of using higher-order (usually QUICK) methods for the continuity, 
momentum, and energy equations, but Hybrid or Power-Law for the turbulence equations. 
Justification of this strategy has been based on the assumption that source terms dominate in the 
turbulence equations’’ (i.e. that convection and diffusion are not important). 

Before 1988, modellers of highly convective flows had a choice between stable and non- 
oscillatory (essentially first-order) methods such as Hybrid or Power-Law, giving plausible (albeit 
highly artificially diffusive) results, on the one hand, and higher-order methods exhibiting clearly 
unphysical oscillations and convergence problems, on the other. Not surprisingly, most users 
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chose the former; and this is a habit continued today. But 1988 was a land-mark year for highly 
convective flow simulation. In that year, Gaskell and Lauz2 introduced their Sharp Monotonic 
Algorithm for Realistic Transport (SMART), and this was followed by Leonard'sz3 Simple 
High-Accuracy Resolution Program (SHARP). These are flux-limiter strategies, similar in many 
respects to the 'TVD schemes (described by S ~ e b y , ' ~  for example) used in gasdynamic codes. In 
general terms, flux limiters guarantee that, in a steady-state finite-volume formulation, the 
convected face value, initially estimated on the basis of a high-order approximation, is con- 
strained to lie within specified limits (described below). This eliminates extraneous overshoots (or 
undershoots) while still allowing high-order resolution of sharply varying features. First-order 
upwinding automatically satisfies the limiter constraints; but inherent artificial diffusion numer- 
ically smears initially sharp features. 

4.3. ULTRA-SHARP strategy 

A non-oscillatory strategy, based on the universal limiter for tight resolution and accuracy 
(ULTRA), has been described in detail e l~ewhere.~~" The ULTRA-SHARP strategy includes all 
other steady-state flux-limiter and TVD schemes as special cases. The main ideas are repeated 
here for convenience. Consider the finite-volume face shown in Figure 11, and define a normalized 
variable (such as temperature, for example) in the vicinity of the face as 

Note, in Figure 11, that the definition of upwind (U), downwind (D), and central (C) nodes 
depends on the sign of the normal component of the convecting velocity at the face, u,. Under 
locally monotonic conditions (Tc between Tu and TD), the estimated face value, Tf ,  should be 
between T, and T,. In terms of normalized variables, this gives a necessary inequality 

Fc < Tf < 1 for o < F, < 1 (52) 

This, however, is not sufficient to guarantee non-oscillatory behaviour (e.g. second-order central 
differencing satisfies this condition). An important additional condition requires Ff to vanish with 
T,; i.e. 
- 

I 
I 
I 
I 
I 
I 
I 
I 
I Un TD 

I' 
I 
I 
I 
I 
I 
I 
I 
I 

Figure 11. Definition of local node values based on the sign of u. 
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Under locally non-monotonic conditions, various strategies are possible. One of the simplest is to 
choose 

(54) 
Other relationships providing continuity at ( f c  = ff = 0) and (Fc = Ff = 1) have been used; e.g. 
in Reference 11, 

- -  
Tf = Tc for Fc < 0 or Fc > 1 

Ff = 3 Tc for Fc < o (55 )  

(56) 

and 
F - 1  f - z + $ F c  for F C > 1  

The universal limiter constraints can be summarized in the normalized variable diagram-a plot 
of the normalized face value, Ff, against the normalized adjacent upstream value, Fc This is 
shown in Figure 12, using equation (54) in the non-monotonic regions. The additional constraint 
boundary, OB, 

I Ff = const x T~ (57) 
is added near f c  + 0, in order to avoid indeterminacy. The slope constant should be chosen to 
be fairly large, say 0(10), so as to maintain sharp resolution. It should be mentioned that TVD 
schemes use a slope of 2 for this constraint; this introduces smearing of (what should be) sharp 
profiles. 

Figure 12. Normalized variable diagram showing the universal limiter constraints 
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In general terms, the ULTRA-SHARP strategy proceeds as follows. (i) Compute a tentative 
high-order (multidimensional) face value, T,. (ii) Normalize this and the corresponding T,. (iii) If 
the point (Fc, ?,) lies within the triangular region OAB in Figure 12, use the face value without 
modification. (iv) Otherwise, take the nearest constraint boundary at the same Fc value (recon- 
structing the corresponding unnormalized face value). In practice, there is no need to use 
normalized variables at all. Instead, successive application of the 'median' function25 results in 
a straightforward, inexpensive (and vectorizable) algorithm. The median function of three 
numbers a, b and c, 

f =  MED(a, b, C )  (58 )  

selects the number that lies between the other two. This is easily implemented using combinations 
of standard (e.g. FORTRAN) f~nc t ions .~  For the universal limiter, define three (unnormalized) 
reference quantities 

Ti = TC (59) 

T2 = T D  (60) 

(61) 

and, following equation (57), 

T3 = Tu + const x (Tc - Tu) 

These correspond to (indefinite extensions of) lines OA, BA, and OB, respectively, in Figure 12. 
Now define 

T4 = MED(T1, T2, T3) 

Tf = MED(T1, T4, TP.'.) 

(62) 

(63) 

After computing a tentative higher-order face value, TP,'., the face value actually used is then 

This is the exact equivalent of Figure 12. In an iterative calculation, use of the deferred correction 
technique then leads to very fast convergence, giving highly accurate, non-oscillatory results. 

To see the effect of using ULTRA-SHARP, Figure 13 shows the results of using ULTRA- 
QUICK for the convection terms in the Smith-Hutton problem previously considered; second- 
order central differencing is used for the (small) diffusion terms. By comparison with Figure 6, one 
sees that the coarse-grid overshoot has been eliminated without smearing the profile. In this case, 
the (effectively) third-order ULTRA-QUICK scheme is not quite able to adequately resolve the 
steep transition region on the coarse 20 x 10 mesh. However, the ULTRA-SHARP strategy can 
be used with (in principle, arbitrarily) high-order convection schemes. Figure 14 shows ULTRA- 
SHARP results for a variable-order convection scheme,' again using second-order diffusion 
terms. In this case, TP.'. in equation (63) is based on the third-order QUICK scheme in 'smooth' 
regions (identified by low values of normal gradient or change in gradient across a cell face); near 
sharply varying features, the algorithm automatically extends to a fifth- or seventh-order estimate 
of TP.'., using an appropriately expanded stencil. This is a cost-effective strategy, since the very 
high-order computations occur only at a relatively small fraction of grid points; however, the 
overall accuracy is greatly enhanced. 

Of course, the higher-order ULTRA-SHARP convective computation is more expensive-per 
grid point-than a typical Hybrid or Power-Law calculation. But in a practical problem 
(involving a pressure solver-often the most expensive component-and several auxiliary vari- 
ables), the overall cost increase is minimal (perhaps 15 or 20 per cent). However, the accuracy is 
increased dramatically-compare Figures 5 and 14. Stated another way: to achieve the accuracy 
indicated in Figure 14 using an EDS-based scheme would require such a prohibitively fine grid 
that the overall cost would be orders of magnitude larger.9*"*22*26 



- REFERENCE 

c 
Figure 13. ULTRA-QUICK results for the Smith-Hutton problem 

- REFERENCE 
Q--B 80 by 40 

40 by 20 

Figure 14. ULTRA-SHARP (3/5/7) results for the Smith-Hutton problem 
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5. CONCLUSION 

This paper has attempted to demonstrate why the immensely popular Hybrid and Power-Law 
schemes (and related EDS-based methods) should not be used for practical CFD calcu- 
lations--especially for convective modelling of heat and mass transfer processes. There are 
undoubtedly many EDS-based computations giving adequate agreement with experiment (or 
other benchmark numerical or analytical results). These schemes work best, for example, for 
steady-quasi-one-dimensional flow, where the main flow direction is (very nearly) aligned with 
a grid co-ordinate, and source terms are not strong. In this case, first-order upwinding for 
convection with physical diffusion neglected (but replaced by artificial diffusion) is being used in 
the main flow direction; transverse convective-plus-diffusive transport is then being adequately 
modelled by essentially second-order methods. In some cases involving flow oblique or skew to 
the grid, EDS-based schemes may give acceptable results. In most cases, these will be found to be 
flows dominated by the kinematic constraint of the (constant-density) continuity equation: that 
the velocity field should be solenoidal. Gradients (of velocity or scalar quantities) are then 
generally smallbexcept in near-wall regions (where special ‘wall-functions’ are typically used,4 
and the flow is aligned with the grid). This is the classical potential-flow-plus-boundary-layer 
situation in which convection-diffusion processes are important only in the boundary-layer 
regions-where the flow is (very nearly) aligned with one of the grid co-ordinates. 

When convection-diffusion processes are important throughout major regions of the flow 
field, EDS-based schemes break down for flows oblique or skew to the grid. This is because, for 
practical grid sizes, component grid PCclet or Reynolds numbers are typically much greater than 
the critical values of 2 (for Hybrid) or about 6 (for Power-Law and EDS itself), and the scheme is 
operating as first-order upwinding for convection with physical diffusion ignored (and replaced 
by artificial diffusion equivalent to setting all component grid PCclet or Reynolds numbers equal 
to 2). Three points should be noted. 

(i) For the (most common) case of turbulent flow, the (expensively calculated) turbulent 
diffusivity or viscosity is being used merely as a diagnostic to switch oflits own effect in the 
governing equations. Results are virtually insensitive to the turbulence model used (except 
in boundary-layer regions). 

(ii) Under the most favourable circumstances, one should expect that serious quantitative 
errors are being made. Profiles involving sharp changes in gradient are numerically 
smeared far beyond the correct physical diffusion rate. These solutions are only first-order 
accurate. 

(iii) In some cases-for example, the thermally driven cavity flows described in this paper-the 
EDS-based solutions are not even qualitatively correct. Physically observed phenomena, 
such as recirculation cells, for example, are not captured-because the eflectiue Ptclet or 
Reynolds numbers are significantly too small. 

Although EDS-based schemes may give plausible (and, in hindsight, even adequate) solutions 
under some circumstances, in a truly predictive situation these methods are simply too unreliable 
for practical use. Fortunately, in all flow regimes, modern cost-effective high-order methods, 
incorporating flux-limiters and deferred-correction techniques, not only give highly accurate 
physically responsive results, but they are also entirely compatible with traditional tridiagonal 
AD1 solution strategies-requiring relatively minor coding modifications in the source terms of 
the iterative solver. 

Exponential-based schemes such as Hybrid and Power-Law should be considered as being of 
historical interest in the evolution of CFD schemes. They should not be used for practical 
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calculations. There is one situation in which purely first-order convection (plus second-order 
diffusion) could be useful: debugging aspects of a new CFD-code-such as the grid generator or 
the graphics package. If the computation blows up or other problems arise, the difficulties are 
probably not with the mild-mannered convection-diffusion scheme. This is easily implemented: 
simply suppress the correction terms in the deferred-correction procedure. When the (non- 
convection-diffusion) problems are fixed, the higher-order flux-limited correction terms can be 
re-activated. 

Finally, there is an exceedingly practical reason why Hybrid, Power-Law or related exponen- 
tial schemes should not be used for convective modelling: there is an increasing probability that the 
results will not be published in archival journals. In recent years, there has been a considerable 
amount of ‘behind-the-scenes’ activity-in addition to open discussionZ7-on the question of 
numerical uncertainty. The basic philosophy is that a paper (or conference presentation) describ- 
ing the results of a numerical simulation of a practical problem should at least address problems 
of numerical uncertainty, just as experimental papers routinely assess experimental uncertainty in 
their results. Journal editors and conference organizers are increasingly aware of the need for 
guidelines to be established, outlining criteria to be addressed. The ASME Journal of Fluids 
Engineering has taken the lead in this respect, based on the considerable efforts of the ASME 
Co-ordinating Group on Computational Fluid Dynamics.28 Volume 11 5 of the Journal of Fluids 
Engineering (September 1993) describes in an editorial a 10-point list of criteria in both long and 
short forms. For example, items 2 and 3 statez9 

2. Methods must be at least second-order accurate in space. 
3. Inherent or explicit artificial viscosity (or diffusivity) must be assessed and minimized. 

More specifically, the expanded versions of items 2 and 3 statez9 

2. The numerical method used must be at least formally second-order accurate in space . . . it 
has been demonstrated many times that, for first-order methods, the effect of numerical 
diffusion on the solution is devastating. 

3. Methods using a blending or switching strategy between first and second order methods (in 
particular, the well-known ‘hybrid,’ ‘power-law’ and related exponential schemes) will be 
viewed as first-order methods, unless it can be demonstrated that their inherent numerical 
diffusion does not swamp or replace important modelled diffusion terms. . . [emphasis 
added] 

The AZAA Journal has also recently adopted a uniform policy on both experimental and 
numerical uncertainty analy~is.~’ A number of other editorial boards are presently considering 
and implementing similar policie~.~’ 
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